Effect of divalent heavy metals on epithelial Na+ channels in A6 cells.
نویسندگان
چکیده
To better understand how renal Na(+) reabsorption is altered by heavy metal poisoning, we examined the effects of several divalent heavy metal ions (Zn(2+), Ni(2+), Cu(2+), Pb(2+), Cd(2+), and Hg(2+)) on the activity of single epithelial Na(+) channels (ENaC) in a renal epithelial cell line (A6). None of the cations changed the single-channel conductance. However, ENaC activity [measured as the number of channels (N) x open probability (P(o))] was decreased by Cd(2+) and Hg(2+) and increased by Cu(2+), Zn(2+), and Ni(2+) but was not changed by Pb(2+). Of the cations that induced an increase in Na(+) channel function, Zn(2+) increased N, Ni(2+) increased P(o), and Cu(2+) increased both. The cysteine modification reagent [2-(trimethylammonium)ethyl]methanethiosulfonate bromide also increased N, whereas diethylpyrocarbonate, which covalently modifies histidine residues, affected neither P(o) nor N. Cu(2+) increased N and stimulated P(o) by reducing Na(+) self-inhibition. Furthermore, we observed that ENaC activity is slightly voltage dependent and that the voltage dependence of ENaC is insensitive to extracellular Na(+) concentration; however, apical application of Ni(2+) or diethylpyrocarbonate reduced the channel voltage dependence. Thus the voltage sensor of Xenopus ENaC is different from that of typical voltage-gated channels, since voltage appears to be sensed by histidine residues in the extracellular loops of ENaC, rather than by charged amino acids in a transmembrane domain.
منابع مشابه
Role of the Invertebrate Electrogenic 2Na+/H+ Antiporter in Monovalent and Divalent Cation Transport
In recent years, an electrogenic 2Na + /1H + antiporter has been identified in a variety of invertebrate epithelial brush-border membranes of gut, kidney and gill tissues. The antiporter differs significantly in its physiological properties from the electroneutral 1Na + /1H + antiporter proposed for vertebrate cells. In all invertebrate cells examined, the antiporter displayed a 2:1 transport s...
متن کاملCa2+ transport processes of lobster hepatopancreatic brush-border membrane vesicles
45Ca2+ uptake by hepatopancreatic brush-border membrane vesicles of Atlantic lobster (Homarus americanus) occurred by a combination of three independent processes: (1) an amiloride-sensitive carrier-mediated transport system; (2) an amiloride-insensitive carrier-mediated transport system; and (3) a verapamil-inhibited channel process responsive to transmembrane potential. Both carrier-mediated ...
متن کاملRole of the invertebrate electrogenic 2Na+/1H+ antiporter in monovalent and divalent cation transport.
In recent years, an electrogenic 2Na+/1H+ antiporter has been identified in a variety of invertebrate epithelial brush-border membranes of gut, kidney and gill tissues. The antiporter differs significantly in its physiological properties from the electroneutral 1Na+/1H+ antiporter proposed for vertebrate cells. In all invertebrate cells examined, the antiporter displayed a 2:1 transport stoichi...
متن کاملThe effect of rapamycin on single ENaC channel activity and phosphorylation in A6 cells.
Rapamycin and FK-506 are immunosuppressive drugs that bind a ubiquitous immunophilin, FKBP12, but immunosuppressive mechanisms and side effects appear to be different. Rapamycin binds renal FKBP12 to change renal transport. We used cell-attached patch clamp to examine rapamycin's effect on Na(+) channels in A6 cells. Channel NP(o) was 0.5 +/- 0.08 (n = 6) during the first 5 min but fell close t...
متن کاملPhosphoinositide 3-kinase is required for aldosterone-regulated sodium reabsorption.
Aldosterone, a steroid hormone, regulates renal Na+ reabsorption and, therefore, plays an important role in the maintenance of salt and water balance. In a model renal epithelial cell line (A6) we have found that phosphoinositide 3-kinase (PI 3-kinase) activity is required for aldosterone-stimulated Na+reabsorption. Inhibition of PI 3-kinase by the specific inhibitor LY-294002 markedly reduces ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 293 1 شماره
صفحات -
تاریخ انتشار 2007